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STRESS ANALYSIS OF HEXAGONAL SHELLSYt

DusaN KRraJcINoOviC

Argonne National Laboratory. Argonne. 1llinois

Abstract—A convenient method for the stress analysis of long prismatic shells with hexagonal cross sections.
subjected to static loading, is developed. By employing the semi-membrane method in conjunction with a vari-
ational principle a closed form solution is obtained. It is, therefore, easy to perform a parametric study of the
influence of various geometries and boundary conditions on the state of stress. Among other things, it is shown
that stiffening the shell with cross-sectionai diaphragms is not always advisable.

NOTATION
cross-sectional area
a;. b,-j, Ciics
Puk - Shk certain definite integrals defined by (2.4)
D flexural rigidity of the plate
d thickness of a plate
E elastic modulus
F(&) functions defined by (4.2)
[F] field transfer matrix
G shear modulus
I, principal moment of inertia of the hexagonal cross section (in.#)
I, sectorial moment of inertial (in.%)
K a cross sectional parameter (in.*)
K, flattening moment of inertia (in.?)
L length of the shell
! width of a plate in the cross section
M, M. M, bending moments and torsional moment in a plate (Ib in.)
M, bending moment of a shell regarded as a beam (Ib in.)
M, bimoment (Ib in.%}
m, nondimensional bimoment (3.21)
N.,N,.N., normal and shear forces (Ib)
Pz Pse P external loads in direction of coordinate axes (Ib in.™ )
Pa flattening load (Ib)
N flattening force (Ib in.)
q. nondimensional flattening force (3.21)
rs nondimensional parameters defined by (3.9)
is} state vector
s circumferential coordinate
T temperature rise above the reference state
ulz. s) displacement in the longitudinal direction (in.)
Uiz) generalized coordinate
1z, s) displacement in the circumferential direction (in.)
Vo) generalized coordinate
Xy, z coordinate frame
W total potential energy
. f nondimensional parameters (4.3)
x, thermal coefficient of linear expansion
P dilatation

+ Work performed under the auspices of the U.S. Atomic Energy Commission.
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(S flattening (nondimensionall
Poisson’s ratio

=z/L nondimensional [ongitudinal coordinate

.a, normal stress (b in.” %)

= L1 relative length ratio
shearing stress (Ib in.” ?)

¥ deformation modes

=, cross sectorial coordinate (in.)

= ¢, sectorial coordinate (in.”)

1 warping (in.” ")
nondimensional warping (3.21)

INTRODUCTION AND BACKGROUND

CURRENT core design concepts for Sodium Cooled Fast Breeder Reactors emphasize
honeycomb arrays of subassembly ducts, each containing hundreds of fuel pins. The sub-
assembly duct is commonly of thin walled hexagonal cross section and 1s long with respect
to the distance across flats. The space between fuel pins inside the duct and the required
clearance space between ducts is filled with liquid sodium.

Within the wide range of problems being studied for the purpose of assessing reactor
safety is an important set of structural response problems associated with known and
postulated accident mechanisms initiated within a subassembly duct. Such accidents
include local and total flow blockage within a subassembly, voiding due to vapor generation
and coolant expulsion and reentry pressures initiated by blockage and/or fuel pin clad
failures leading to the injection of molten fuel into the coolant. Within this context the
structural response study is intended to develop methods for estimating the confinement
potential of a single duct to such postulated accidents and then to examine the response of
surrounding ducts should this confinement potential be exceeded. This paper is concerned
with one part of the total long range study. namely the static stress analysis of a typical
subassembly duct subjected to lateral pressure (Fig. 1) in order to understand the coupling
between gross lateral bending and cross sectional deformation.

1. FORMULATION OF THE PROBLEM

We consider a long prismatic shell with a hexagonal cross section (Fig. 1). Six identical
plates are rigidly joined together along the nodal lines. The shell is subjected to a lateral
load p,(z) which is for convenience considered to be symmetric with respect to y axis. The
shell is surrounded by a stationary temperature field giving rise to moderate thermal
stresses. The boundary conditions on two terminal cross sections are considered to be
natural but are otherwise arbitrary.

The proposed goal is to establish a rather simple but sufficiently accurate method of
analysis for the considered shell. The method is expected to allow for a qualitative analysis
in order to estimate the influence of shell’s geometry and boundary conditions on the state
of stress. In addition, an extension of the analysis to stability and vibration problems should
be attainable.

In addition to some purely numerical solutions the considered shell may be analyzed
as a folded structure (using either mixed or displacement method-—see Ref. [1]) or as a
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F1G. 1. Subassembliy fuel duct {a) cross section, (b} non-zero forces and displacements, (c) analytical
model.

thinwalled structure employing the so called semimembrane theory (or Vlasov’s variational
approach).

The essence of the latter method (see Refs. [2, 3]) is that the variations of all dis-
placements and stresses in the direction of the generatrix are assumed to be smoother than
those in circumferential direction. In other words, the bending moment M_, torsional
moment M, and the transverse force 0, are neglected. These forces are considered to be of
secondary importance in comparison with the rest of the internal forces presented in Fig, 1.
As far as the kinematics of the deformation is concerned we assume that each plate for
itself deforms according to Bernoulli’s hypothesis. The physical meaning of introduced
assumptions is that the actual shell is approximated by a spatial system consisting of hexa-
gonal frames joined together by a lattice structure [Fig. 1(c}].

The position of an arbitrary point M on the middle surface is determined by co-
ordinate z from a fixed cross section and by the circumferential coordinate s (measured
counter-clockwise from an a priori determined generatrix s = 0). The deformed position
of the shell’'s middle surface is determined if the displacement of each point is a known
function of z and s.

We denote by u(z, s) the component of the dispiacement vector along the longitudinal
axis and by v the component in the circumferential axis. Positive directions of u and v are
indicated on Fig. 1.
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The basic feature of the employed Vlasov's method is that the displacement components
u and v are approximated by finite series

n
ulz.s) = Y Ulzldys)
i=1
n
vzs) = Y Wlzils)
k=1
where U{z) and V,(z) are generalized coordinates to be solved for. while ¢(s) and (s are
some « priori chosen (known) deformation modes. Such a technique apparently serves
to reduce the governing system of partial differential equations to a corresponding system
of ordinary differential equations.

As a consequence of our assumptions concerning the deformation of the cross section
the axial displacements are fully determined by six axial nodal displacements. If we restrict
ourselves to deformations symmetric with respect to y coordinate, the total number of
unknown generalized coordinates U is apparently m = 3.

The number of unknown functions V, depends on our choice. There are. obviously.
three rigid body degrees of freedom for an arbitrary cross section (two displacement com-
ponents and a rotation about the longitudinal axis). In addition, one may wish to consider
distortions of cross section likely to occur for the specific load. We again restrict ourselves
to deformations symmetric with respect to y-axis, which reduces the number of rigid body
motions to one (vertical displacement), and assume that the shell may experience flattening.
The reason for such an assumption, in case of the considered load, is apparent after the load
is presented as a superposition of its symmetric and antisymmetric part. The latter one 15
obviously associated with pure distortion without bending in longitudinal direction since
its resultant vanishes.

[t is obvious that the choice of five deformation modes ¢; and v, is rather arbitrary (as
long as they are independent). It is convenient to choose them as shown in Fig. 2. Mode
¢, corresponds to the axial displacement. mode ¢, to conventional beam flexure (rotation
about x-axis), mode ¢, to deplanation (similar to what 1s in torsion problems called
warping?t although definitively not the same), mode , to vertical displacement and mode
¥, to the flattening. Modes ¢, . ¢, and ¥, define the deformation of the shell treated as 4
beam in conventional sense (Bernoulli’s hypothesis valid), while ¢, and , reflect defor-
mations associated with the longitudinal and transverse distortion of the cross section. In
other words modes ¢ ; and i, result from the fact that the shell’s cross section is regarded
to be too flexible to deform according to Bernoulli's hypothesis.

The diagrams of the deformation modes ¢, and i, are plotted in Figs. 3 and 4. Plotted
are also first derivatives d¢/ds. For the assumed positive directions of the coordinates s it
follows that

do, 7oy dx+8¢i dy ch; . +(‘:¢i
—— = o e —— - = ——— SN %+ COS %
ds cx ds  Cvods ox o cy o3
Since
p, =1 b, =y by = —tht+hy . sgn(y) 1.2)

t We will henceforth use the term “warping " although in classical sense of warping torsion the considered shell
does not warp (due to the fact that di = const)
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Fi6. 2. Assumed longitudinal and transverse deformation modes.

FiG. 3. Diagrams of longitudinal deformation modes and its derivatives with respect to s.
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F1G. 4. Diagrams of transverse deformation modes.

one has

d
ddi;l =0 dc% = cosa % = h.cos xsgn(y)

Note also that since the functions i, are constant along each plate length, dy; ds = 0.

2. DIFFERENTIAL EQUATIONS—GENERAL DERIVATION

The external load acting upon the shell is presented by its three components p., p, and
p, in direction of three coordinate axes c, s and normal to the middle surface n. In order to
be consistent with the proposed model the external load 1s decomposed into two com-
ponents: {a) a self-equilibrated system of forces bending the hexagonal frame without dis-
placing its mass center, and {b) a system of concentrated nodal loads causing the vertical
displacement of the frame (and, therefore, stressing the lattice structure).

For example, consider uniformly distributed load given in Fig. 5(a). Decompose it into
a system of resultant nodal forces [Fig. 5(c)] and a seif-equilibrated load [Fig. 5(b)]. From
the standpoint of our frame-lattice model it is apparent that the latter component having no
resultant only bends (distorts) the cross-sectional frame. The system of nodal forces [Fig.
S(c)] has a two-fold action: firstly it bends the shell as a beam (without distorting its cross
sections—only normal forces in the lattice do exist) and it secondly adds to the distortion
of the cross section through its components p; in the direction of individual plates [Fig.
S(d)).

The stresses in the shell are

Cu (v
fs: = G(;—S_J'_it) = G(Z le)ls+ Z [/k wk
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F1G. 5. Decomposition of the lateral load p, into a self-equilibrated load and a load with resultant.

The forces in the shell are accordingly

Ed 5 5
N, = [62 O deveT N, = 4 (@+2)

1—v? 6 i 2(1+v)\és o0z
o & *w (2.2)
Ny= 1 [ +v—u—(1+v)aT:| M,= —-D—
os Oz Os

where E is the elastic modulus, G shear modulus, v Poisson’s ratio, a, thermal coefficient
of linear expansion, T the temperature rise above the reference state, d thickness of each
individual plate, D = Ed®/12(1 —v?) the flexural rigidity of the plate and w the displacement
along the normal to the middle surface of the shell.

The total potential energy is the sum of the strain energy of the lattice, strain energy of
the frame (in bending) and the potential energy of external load

L
W= f {f (N6 + Neot Noras+ Mok — (oo + ool ds— 3 pﬂ-v.} dz (2.3)
4] s

where M, is the bending moment and k, = M,/D the rotation of the cross section of the
frame, p,; forces given in Fig. 5(d) and v, tangential displacement of the plate i.
After substitution of (2.1) and (2.2} into (2.3) obtained are the governing Euler’s equations
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of the problem rendering the potential energy minimum.

L—v l—ve | | —v?
)T Ub;; ——T*g_ Vs — L+ v Z li._.a,jﬂ—”va-

Z L’vi,::ai p}': =1

l—v ] l—v ] ' [ 2
2 Z Uizt t 5 (V2w = VieSun) — E Prs = 0
2 5 -

with comma standing for differentiation with respect to the argument following it. Intro-
duced 1s also the notation

Uiy = J ¢’j¢idA Fe = ‘ Yy dA
' L[ MysIMys) .
b = 4‘ ¢;-9:.d4 Sk = F J '—Tds (2.5)
Ci = ‘ ¢, dA
and
Pj: = ' p:‘f’j ds Prs = ‘ Py ds+ Z Psuj)'//hu',y 12.6)

{if)

Coefficients 1, are calculated in the following way. We first present the temperature
distribution in form of series

T =) t{2)pis) (2.6)
and then determine r,(z) simply as solutions of the set of linear algebraic equations

Yt :J To,dA.

5

Since g;; are in most cases orthogonal the solution for ¢; is straightforward.
The associated boundary conditions are derived to be

[ N6, ds— | Mg ds =0
) -

5 ¥3

J N, ds — f N*y,ds =0

where asterisk indicates external force applied to the structure. Integration is carried out
over the entire terminal cross section.
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3. DIFFERENTIAL EQUATION FOR THE HEXAGONAL SHELL—
SYMMETRIC CASE

As a first step of specifying equations (2.4) for the symmetric deformation of a hexagonal
shell we compute the integrals (2.5) and (2.6) using the diagrams for modes ¢, and ¥, as
given in Figs. 3 and 4.

We write onlv nonzero terms

ay, = f12dA=6d=A 3y = 3dl =14

LY

a,, = [ysz =1, 3y = —3dh = —K
Ay, = 2dh*l =1, ry; =3dl =34 (3.1
by, = 3di = 34 ras = 3dh = K

byy = 3dh2 = K

where A is the cross-sectional area, I, moment of inertia about x-axis, I , sectorial moment
of inertia (with the dimension of in.®), such that EI , is the warping rigidity (resistance to
warping) while GK is the shear rigidity.

Finally we compute the term Y, ¥, {(M,M,/EI)ds expressing the work of internal
forces associated with the flattening of the cross sectional frame. The diagram of bending
moments due to V,(z) = 1 (Fig. 2) is plotted in Fig. 6(a). The moment in the node is com-
puted to be

M (3.2)

5

_24Elh
T 5 1
therefore

_lszd _3841(R\: 32k
ST E I E YT s 0N T

2
| -

since the moment of inertia for the frame is

F16. 6. Moment diagram in the hexagonal frame corresponding to the flattening of the cross section.
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Coefficient s,, has been determined as a generalized reaction of the cross-sectional
frame to deformation V, = 1. and, therefore, represents the rigidity of the frame against
flattening. Thus cross-sectional parameter K, will be referred to as flattening moment of
inertia (in.?).

For the uniform lateral load p, (as shown in Fig. 5) concentrated nodal forces R are

/ /
R, = §i—" and R, = 41
Hence,
1 I
ps(56) = :ipnl ps(-tSi = mpnl

N
The distributed load in the plane of the plate

1 3
Py = P2 = %;pn

According to (2.6)

Ps1 = [Psl//x ds+Zps(ij)l//l(ij) = 2p,l

Ps2 = J P2 ds+ 3 Paip¥aay = 3Palh. (3.3

The first of two forces, corresponding to vertical displacement, equals exactly the distri-
buted transverse load, as one certainly may have expected. The second force p,, may be
referred to as a distributed flattening force.

Once all the necessary coefficients are computed, the governing system of equations is
written from (2.4) as

EAUY —Eaty A+p., =0

ELLU}~YGAU, —1GAV, —1El 1 +p.; = 0
EILUS~GKUy+GKV, —aEl l}+p.; =
LGAU, +4GAV | +p,, =0
~GKUy+GKV—EK Vs +pgy = 0

!
-
o
+

where for convenience v = 0. With primes denoted are the derivatives with respect to .

It is apparent that for the assumed deformation modes the state of stress may be re-
garded as a superposition of three independent states:

{a) Axial loading

EAUY = —p,, — EAwt) (3.5)
(b) Bending in the principal plane yz
ELU~4GA(U,+ V)4 p., —2ELfy = 0
GAU+ V) +p, =0
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or simply with V, = #(z).

EI ' ' B
Elqn'Y = psl—2~A—C’;psl—p=2+1E1,.(t2). (3.6)
The second and third term on the right-hand side of equation (3.6) reflects the influence of
shearing stresses in the plane of plates on the deformation of the member. If they are
neglected equation (3.6) is identical to the well known equation of beam flexure.

(¢) Distortion of the cross section
El o] —-GK(w, —k})+p, =0
1 1 1 (3.7)
- GK(w),~—k))—EK,k,+p, =0

where the symbol w,(in. ™ ') is used for the “‘warping” U of the cross section, while for the
flattening V, a new symbol k, (nondimensional) is used. Also

Po = P:z3 and Pk = DPs2-

Using nondimensional quantities w = w,/ and ¢ = z/L, with L being, say, span of the
shell, from (3.7) it follows

w'V =2r’w" +s*w = p (3.8)

where the differentiation is now with respect to & Nondimensional parameters r and s
are given by

1 EK 32(d\?[L\? K 64(d\?(L\*
2 _ - kra 248V 4= 4 _ hpa A [
" =36k " 15(1) (1) and =L 5(1) (z) 59
while the right hand side p 1s
K. . L%, L4
=_5 l — - /. .
P =1L~ Pot g Pe (3.10)

I, d*w; 1
- — D) 11
Ky Kx d23 +'E~K;(px pm) (3 )
Introduce generalized force
Pi= - ( o (s)d4 (3.12)
Ja

From o, = E¢, = Eu., we write .
P= —EX U, [ 944

If. finally, functions ¥, are chosen to be orthogonal (as in our case they actually are), the
generalized forces are

p; = EU; qa;; (3.13)
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Le. the normal stress o. is given by

oAz 5} = Z {);—(j:)-gb,-(s). 31
From (3.12) we calculate
Po= - [cdd=N, Py=- ' sadd = M,
and
Py=M, A= - /'a:d)3 dd = —El v 13.15
where [, = a;; is given by (3.1).
Hence
:%4,‘1‘-“},4_%[’“9 13.16)

¥ i

where the first two terms represent the normal stress calculated from the beam theory (3.5)
and (3.6), while the last term is the contribution of the cross-sectional distortion. Due to
the similarity with the thin-walled member torsion problems (see Refs. [4, 3]} we will
refer to M, (Ib in.?) as bimoment (see Fig. 7). Q = ¢5 (in.?) as sectorial coordinate and
[, =[Q%dA (in.°) as sectorial moment of inertia.

The generalized force associated with flattening is

Q.= | w,dd = GU; | ¢sp, dd+ V5 | 3dA
[N I .
or, using already computed integrals (3.1).
Q, = GKix| —m) IR

The contribution of the flattening due to the shear stress 1s,

_2

o= Gir ~w ¥ = 2y {318
N {0y =y K St
where ¢ = —, = — W is the cross sectorial coordinate. Q,, (Ib in.) will be referred to as

the flattening force (Fig. 7).
We also note from (3.7a) that in absence of the distributed external force p,,

M =0, 13.19)
In other words the relation between the bimoment M, and the flattening force Q, is identical

to the relation between the bending moment and transverse force in conventional beam
analysis,
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SHELL AXIS
FiG. 7. Bimoment M, and flattening force Q, .

We finally derive the expressions for M, and @, given in terms of w, only

dw,
“ dz

d’w
Q!\‘ = _EI(DE?L—p(‘J'

M, = —EI
(3.20)

Introducing nondimensional quantities

l
m, = Mw_£_
El

L
*El

w

q. = Q (3.21)

K,
K =K, —IL3
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and
_ IL* . I’
P, = P“‘E‘i:l P = Px‘ET- £3.22)
We finally write
m, = —@
G = ="' =P, (3.23)

K=o +p =P

The problem of stress analysis is therefore reduced to the solution of an ordinary
differential equation (3.8) with constant coefficients. The resulting stresses are to be super-
imposed on the stresses due to the flexure and axial stressing (in conventional sense) for
which the shell is regarded to be a beam deforming according to Bernoulli’s hypothesis.

It is probably appropriate to discuss briefly the choice of the deformation modes ¢,
and . [tis realized that only ¢, ¢, and y, are associated with stress resultants which are
to equilibrate the external loads. All subsequent deformation modes should be chosen such
as to result in self-equilibrated forces. Instead of assuming, for instance, that the displace-
ment u(z, s) is defined as a straight line between two nodal points, we may feel that the
distribution is better approximated by a parabolic (or sinusoidal) curve for which the total
area under the curve is vanishing (in order to have orthogonal functions ¢,). It is understood,
of course, that each additional mode results in an additional equation (and additional
unknown generalized displacement and generalized force). In other words additional
refinements are paid for by additional computational complexities. The point is, however,
that such a trade-off is available if considered justified.

4. SOLUTION

4.1 General solution of the homogeneous equation
The solution of the equation (3.8) can be written as

(1)(5’ = C1F1(5)+C2F2(§)+(‘3F3(§)+C¢F4(é) f4“
where ¢; are some constants to be determined from boundary conditions. while F,(&) are

F (&) = cosh «& sin B¢
F,(&) = cosh x2¢ cos BE
) _ i i {4.2)
F (&) = sinh «¢ cos ¢
F (&) = sinh «& sin ¢

where

) 2V12 2 RANE )
S“+r §™—r-
x=(v~~) ﬁ=(—~¢) . (4.3)
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A particularly convenient way to solve the problem for a variety of boundary con-
ditions is the so called method of initial parameters (see for exampie Ref. [6]). Coefficients
¢; are determined such that the solution (4.1) takes the following form

() = wo fy+Kof2+mof3+40f 4.4)

where subscript 0" indicates the value of the corresponding function at the origin & = 0.

Functions f, form an independent linear set of functions of particular integrals F(£). After
some elementary calculations it follows from (4.1) and (3.23), that
Wo = €, go = — (0 — B*)—c,2af

my = ¢ f—cy Ko = 1 8(3a* — f*)+ csa(0® — 35%)

and, thus
¢, = aA[— kKo — (@ = 3pH)my) c3 = BAlKky+(3a* — BH)my)
4.5)
€, = Wy €4 = '—ﬁ[%'*'(“ ~ B?)wq]
where
A = —[2afa*+ A (4.6)

Substituting relations (4.5) back into (4.1) and appropriate relations for m,,, g, and «, it
follows that the so called state vector {s},

{s}, = [w,k,m,, q] 4.7

(where superscript ¢ stands for transposition), at an arbitrary position £, may be written
in terms of the initial state vector (at & = 0}, by means of the fieid transfer matrix {F], as

{s} = [Fl{s0}- (4.8)

The terminology is apparently borrowed from the Ref. [6].
The field transfer matrix [F] is after some simple calculations determined to be

[ F,—yF, _A@F,—fFy)  AbsFy—asF)) e ]
2p 4
(aZ +ﬁ2)2 (a2+B2)2 1
TT3p Fy+yF, Toaf ¢ ia_ﬁ( a3Fy +byF3)
[F] = x(aF,+ pF3)
a4+ p? 1 1
—‘275‘ 2aﬁF4 F,—9F, Z{‘B(“F1+BF3)
X (aF—BF3)
( 2+ 2)2 1 + 2
R R RN —“——pfi( aF\~BFy)  FatyFs

4.9)
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where
%% — B
B
ay; = w2’ =3 14,10
by = (3a* — B*)B

4.2 Particular solution

Although the discontinuities in distortion « and x could also be treated within the
presented scheme as some generalized loads we will confine ourselves to the lateral loading
p.(z) as shown in Fig. 5.

Consider the case of a shell subjected to a concentrated flattening force P¥ and a con-
centrated bimoment M* applied at Z (Fig. 8). For all points & < Z relation (4.8) remains
valid. For points & > & due to the linearity of the transformation one has

(,U(é) = (UOF()()( ) K-()17- '(6)+'n0Fn)m(E)+q0Fuq )

. (410
+MEF, (E—3)+ PEF (=
etc.
3
////
, P
s
Fii. 8. Concentrated bimoment and flattening load applied at & = ..
In matrix notation
st = TFIO s} + 1871, 412)

In a general case of a load distributed over some length (S _, . ) it follows that the com-

ponents of the vector !s°! are

w¥ = l Fo&—mPn)ydn+ ‘ F & —mm¥n) dy
K = [ Foge—mPandn+ | Folc—nimstn

) ,‘ 4.13)
m° = (F,..qlé—n)l—’x(mdnwL ’ Foml & —mim3in) dy

q' = ( Fol&—mpnmdn+ qumli—ﬂ)rrlﬁ(n)dn
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where F;; are the corresponding components of the field transfer matrix [F] (4.9). The
domain of integration is [¢_, ¢, ]. Formulas (4.13) are apparently also valid for con-
centrated loads when the integrals (4.13) are interpreted in Stieltjes sense or, even simpler,
if the loads are presented by Dirac-delta function 6(&).

PHE) = P&)d(E-2).

For a flattening force p, = P* uniformly distributed over the entire length (0, L) of the
shell. from (4.13) it follows that

{s°) = p* ( AlaF}—pF%)

—(F3+yF5-1)
Fx (4.14)
2uf

oF¥+ fF%
2ap

where asterisk in F¥ denotes the value of F; for £ = 1. With p* denoted is the intensity of
the nondimensionalized external distributed flattening load.
For a concentrated flattening force 9* at £ = 05 it follows

0y — p*
8y =

0-5
ZﬁFA( )

B[a3F (0-5)+ b3 F4(0-5)]

!
22p 2 F105)+BES(05)]

F2(0'5) + '}'F“(O‘S)

{4.15)

We note that the terms arrayed into vector {s*} in (4.12) are nothing but particular
integrals. The proofis rather straightforward. Going along the negative £ axis one may write

= [Flis) (4.16)

where the matrix [F] is obtained from [F ] given by (4.9) by replacing ¢ through —¢. This
amounts to changing sign in front of odd functions F, and F. By comparison of (4.8) and
(4.16) it follows that

[F]=[F]"! (4.17)
Equations (3.8) and (3.23) are further rewritten as
w+m=0
K +2rfg+s*o =0
(4.18)
m-—q=20
4 +K =Py
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Using now the method of variations of constants in conjunction with (4.17) it follows that
159} are indeed particular integrals.

5. STRESSES IN THE SHELL

As a result of adopted assumptions the problem is decomposed into two parts. First
part consists of the beam-like behavior of the shell (Bernoulli’s hypothesis of planar cross
section preserved), while the second part accounts for the distortion of the cross section.
Therefore, total stresses in the shell are determined by superposition of stresses due to the
flexure of the shell regarded as beam, and stresses due to the distortion of the cross section
{departure from the Bernoulli’s hypothesis).

For the purpose of comparison we will restrict ourselves to uniformly distributed load
p. (Fig. 5) extending over the entire length of the shell. The load components p;, (beam type
bending)and p,, {(flattening effect) are given by (3.3). Moreover, we will assume that the shell
is simply supported ¥, = M, = Qatbothends z = 0. L.

{1} The normal stress o, due to the beam type bending is

M,
o) =ty

¥

where the bending moment {for uniformly distributed load p,, = 2p,/inlbin. " '1is

M, = pL -2
Moment of inertia I, is
3 3 IO 3
I,=1 v"dA4 =—I1dh"
3 2y 3
For y = +hand z = 0-5L the maximum stress is
3 L*
Bl e TN T 5]
i 20 di b

where superscript {5} refers to bending. Upper sign {— for compression) is for the upper
plate {1-6}. while the lower sign (+ for tension} is related to the bottom plate {3-4}.
The normai stress o, due to the “warping” of the cross section is according 10 13.16

M (2
gt = Aol (5.2)

@)

where Q = ¢ {Fig. 3) is the sectorial coordinate. Since for every - = const. M1, isa
constant, the distribution of ¢{* in the cross section is defined by Q.

As a result of our analysis we wiil be able to compute nondimensional bimoments /7, ,
flattening forces ¢ and distortions k. Bar denotes that the corresponding quantity is com-
puted for g* = 1.

Once the nondimensional moment #,{a, B. £} 18 computed, according to (3.21a1, 1322}
and {3.3) it follows that

‘\4!'} = ;‘ﬁmpsc‘{‘z = %ﬁE(;:anth* {i}}
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Therefore for both upper and bottom plates

9 L? 3 L?

w7 - 3 op -

o) m”p"dh3Q 4mwp,,dh.

We note that for points v = 0, x = +/[(i.e. in the horizontal plane through the neutral line)
L2
—'2—771(0[7"@.

(5.4)

=0 and o = (5.5)

{ii) The flattening force Q, is calculated from (3.21b), (3.22) and (3.3) to be
Q. = dp.L = 3gp.IhL. (5.6)

For K = 1Alandfor ¥ = -l_-(\/3/2)l (Fig. 4) it follows from (3.18) that the shear stress due
to the distortion of the cross section is
/ 3 L
@ = 437 N )
4 ~—4Pn5 4 (5.7)
where the distribution in the cross section is defined by ¥ = ¢, (Fig. 4).
The shear stresses due to the beam type behavior of the shell, to be superimposed on
(5.7), are

™ = %b (5.8)

where Q. is the transverse force, s cross-sectional modulus and b thickness of the relevant
part of the cross section measured parallel to x-coordinate.

(i11) In addition to these two stresses, the circumferential normal stress ¢, due to the
flattening of the cross sectional frame ought to be determined. The bending moments at
nodal points of the cross section regarded as a hexagonal frame (Fig. 6) are according to
(3.2

12EI h
) =——2 K,z 9
Mz) = s 7 7" Kq(2). (5.9)
Once the flattening of the cross section #(z) (again for g* = 1) is solved for, it follows that
3 2
M, = 16;\p,,1

The normal stresses in the upper and lower fibres are

O-;f - + (5.10)

Relation (5.10) would give the total hoop stress for the load linearly distributed along
the nodal lines. For the load presented in Fig. 6(a), additional hoop stresses are determined
from the hexagonal frame subjected to balanced load from the Fig. 6(b). The maximum
bending moment in the frame occurs at nodes 1 and 6

M > I? 5ok (5.11
= — 0. = — .
s 72pn > Vs 12pnd )
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Hence. the total hoop stress is
: 19 5 -
g +(_,;+A)pn(_) (3.121
\

where the upper sign belongs to the upper fibre.

6. EXAMPLES

As an illustration of the method, the results of the analysis of shells with various geo-
metries and boundary conditions will be presented. Shells are loaded by a uniformly distri-
buted external load p, (as in Fig. 5) along the entire length O < - < L. The analysis is carried

out for three sets of boundary conditions, namely, the terminal cross sections at = = 0
and L are:
{a) Stiffened by a thin diaphragm being rigid in its own plane, but offering no resistance
to deformations perpendicular to the cross section, 1.e. at - = 0, L
k=M, =0 (6.1)

(b) Stiffened by a thick diaphragm which cannot deform at all. te. atz = 0. L

K=wm=0. t6.2)
(¢} Completely free. t.e. atz = 0, L
M, =0Q.=0 (6.3)
6.1 Thin diaphragm
Boundary conditions are given by (6.1). Two initial conditions are known r, = m,, = 0.
The remaining two . ¢, are determined from w(1) = m(1) = 0. 1.e. from (4.9} and (4.1

one has in matrix notation

= p ) " 1(74)

[—Ulﬁ-[}l)l(cxf:]k-k/)’f:?) —{d; T—r—b_;F’;)}{u)o\? J:l/f‘F?*}'FI_I)!
w0 -

*
(x+ B AF* — BF%) (xF*+ BF%)

where (228) 7! is factored out. From (6.4) it follows

geotha—cy)(f—cy)
Wy = —pFr——s— 5
A TP IV
(6.5)
Llcoth x—co)iff+axcy)
qo = —PD 2
23(ﬂ(1 +L1)
where
o sinfs . cos f}
T dahsy P T dnhoy 1061
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Once w, and g, are determined we calculate the generalized forces from (4.9) and (4.14)
to be

1 o +ﬁ2 1 F4 —~
E)—*-m(, = —B——(aFl ﬂF3)(A)0+‘2‘(;~/}{1F1+6F3)q0+2&—'ﬁ (6/)
1 _ (P aF |+ fF,
—qg=4=——7+—F _— )
p*q q 2f 4o +H{F+7F g0+ 2B (6.8)
while the flattening deformation is
1 _ (* + B*)? 1
IFK K —ﬂ(aF1+[fF3)wo—ﬂ(a3F1+b3F3)q0—(Fz+}'F4vl). (6.9)

It is obvious that the relation (6.7), for example. could be still simplified. From (6.5)
and (6.7} it follows that

tha—c¢ F
Fi (&) = — SO BE(F, 40 Fy) 4ot (6.10)
2ap 2p

etc.

The diagrams (&), (&) and &(£) are plotted in Figs. 9-11. We note from the diagrams
in Fig. 9 that the bimoments in the midspan become negligible with increase of the relative
length ratio L/I. In fact for large p = L/l it follows that s? > r?. Therefore, a ~ f, ¢, ~ 0,
¢, ~ 0andcotha ~ 1. From (6.5) it follows that

p* p*
DT T4 p) T 4
o (6.11)
=5
Writing now
F, = §sinaf(e**+e™*) etc.
it follows that the distribution of bimoments is given by
m, = -3z sinag|e * (6.12)

In other words the bimoments are rapidly decaying going away from the diaphragm which
is typical of the so-called edge effect. We, of course, realize that the omission of M, as an
internal force in our analytical model, does not aliow for an accurate assessment of stresses
near the ends.

6.2 Thick diaphragms
As a next case we consider boundary conditions (6.2). Two unknown initial parameters
mg, and g, are calculated from

a;F¥ —byF%
Yo —F4 Mol _ _F‘aF’ pF3) (6.13)

(02 4+ BH*FE  —(asF¥+b,F%) ] L g0 20B(F%¥+7F%—1)
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THIN . THICK
[ —
DIAPHRAGM ' DIAPHRAGM
20183
0.2101
£ :30d
4\20
bimoment

Fit. v. Nondimensional bimoments for i.d = 10, 20, 30 and L [ = 11, {5. 20, Left thin diaphragms case.
right thick diaphragms case.

such that
R e

and 6.1
1 2af{c, —coth %)
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F1G. 10. Nondimensional flattening force for I;/d = 10, 20. 30 and L/l = 10, 15. 20. Left thin diaphragms

such that
! n m
7 w = =
p*
1 _
—EQK =q =
1 - s
P

case, right thick diaphragms case.

1 F
(Fz_”)’F‘t)mo*'E&'ﬁ‘{@Fx'*‘51:3)510‘*'2*;[3
a?+ p?

1
- {aFy — BF )mg +(F, +7F 4)qo +5—aF) + fF;)
0B 2af

2, g2y 1 (
(@”+ A7) F4m0—§&—(a3F1+b3F3)qo~lF2+yF4—1).

 20p p

For long and thin shells. using same arguments as in the Section 6.1, we derive

1
my = ,,—O(EP* and ¢o = —&P*

(6.15)

(6.16)

6.17)
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THIN ; THICK
——
DIAPHRAGM ’ DIAPHRAGM

flattening

Fig. 11, Nondimensional flattening for {d = 10. 20. 30 and L[ = 10, 20. Left thin diaphragms case.
right thick diaphragms case.

and the distribution of bimoments is therefore

1 . .
M= =g *{Cos x—sin x). (6.18)
Iyt

6.3 Free ends

From boundary conditions 6.5} m, = g, = 0. Two remaining initial parameters are
computed from m(l) = g(l) = 0

[u3+ﬁ%uFl~ﬁFQ ~-F, }fvmz N
(2> + A F, —i%F, + BF,) B

b 16,193

[

P
Uiy b Lar, « pF,

The solution of {6.15) 1s by inspection

g = 0 Ky = p* 16.201
such that

== g =0 1621
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and
K = p*. {6.22)

Diagrams of the bimoment, flattening force and flattening itself are presented in Figs.
9-11.

As expected, an unstiffened shell subjected to uniformiy distributed flattening load
undergoes only a uniform flattening of the cross section. while the “‘warping’ is absent. As a
consequence, stresses ot = 19 = 0, while Y’ may be computed directly as for the
hexagonal frame (Fig. 6}.

7. CONCLUSIONS

Some important conclusions follow from computed results. In almost all cases the
influence of diaphragms on prevention of flattening has local character. In other words. the
flattening of the cross section, and therefore, hoop normal stresses ¢, are in the midspan
equal as for the unstiffened case. On the other hand, by constraining warping, diaphragms
induce bimoments, and consequently, add to the normal stresses ¢,. Hence, in particular
case diaphragms should be either very close or avoided at all (if ¢, are not considered
significant). In order to get a feeling for the order of magnitude of stresses we present a few
results. With regard to classical bending the shell is simply supported at £ = 0, 1.

For | = 10d and L = 10!, at the midspan 7 = 0-00030 and k = 1-090 for the case of
the thin diaphragm. Hence, in the bottom plate

max o = (026 +103-92)p,
while
max o/ " = (1227 +41-7)p,

i.e. the normal hoop stresses due to the distortion of the cross section exceed the longi-
tudinal normal stresses (with warping contributing a quarter of a per cent).
However, for the same case but ! = 304, im = 0-0149 such that

max ot = (38-834-103-92)p,

Maximum normal stress due to the “warping” occurs for thick diaphragms at ¢ = 0, 1.
For L = 10l and | = 30d. m(¢ = 0) = —0-0417. Hence

o = —108-26p,
Now if the sheli is fully clamped with respect to bending, at the same place we compute
o = —10392p,

again in the bottom plate. In this case the contribution of bending and warping are just
about equal.

One should keep in mind that this discussion is restricted to the uniformly distributed
load. In case of a concentrated force even for the shell without diaphragms warping will
occur and the conclusions may be quite different.
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One can summarize the computed results in the following way. If the shell is long
enough the longitudinal normal stresses ¢, due to the beam type of bending are predominani
and little is to be gained by suppressing cross-sectional distortions. especially if 5, is within
allowable limits.

Due to the simplicity of the procedure and availability of closed form solutions a
thorough parametric analysis appears to be quite appropriate for each given case.

8. SUMMARY

Presented is a static stress analysis of a long prismatic shell with a hexagonal cross
section. The method empioyed is known as semimembrane. implications of which are dis-
cussed in Section 1. Such a formulation enables a closed form solution to the problem. The
analysis is decomposed into two parts:

{a) analysis of the shell regarded as a beam (see Ref. [7]):

{b) determination of additional stresses and strains due to the departure (“warping™

and flattening) from the beam behavior of the shell.

The proposed method of analysis stands, therefore. in between the exact (shell theory)
solution and the approximate “beam’ type of solution. If necessary. we can improve on the
accuracy by adding new deformation modes. In the close proximity of diaphragms the
results for stresses are incomplete due to the absence of bending moment M.. However,
in most cases maximum stresses are located in the middle of the shell where the proposed
method is a close approximation of exact theory.

Solution to the problem, presented in Sections 3-6, is formulated in form of the initial
parameters (or transfer matrices} method. This type of formulation enables the analvsis
of a much wider scope of problems than it was possible to outline in a single paper.
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AbcTpakT—Hccneayerca, OOBIKHOBEHHBIM METOLOM., AHANH3I HANPAKEHHWH UIHHHBIX [PUIMATHHECKHX
080M04EK € TEKCArOHANBHBIMH TONEPEYHBIMY CEYSHUAME, TOABEPKESHHBIX 1EHCTBHIO CTATHHECKON HArPYIKH.
Nonyyaercs peuienue, B JaMKHYTOM BuAe. NMPHMEHAR METOA MOJYMEMOPAaHbI BMECTE ¢ BapHAUWOHHBIM
NpUHUMNIOM. [1O3TOMY, MOXKHO N€rKO BLINOMHMTL HCCIEJI0BAHHE NAPAMETPOB pPAIHBIX reomMeTpui u
TPAHUYHBIX YCHOBUR, HMES B HAAHYMK HX BIHAHHE HA HANDAKEHHOE COCTORHHE. MEXIY NPOYHM HOKAIAHO,
4TO yeunaeHue oBOI0YKH NGNEePEHHBIMI anadpar vaMy He Beeraa uelrecoobpalso.



